SILICOFLEX JOINT SEALING SYSTEM

TECHNOLOGY

The Silicoflex Joint Sealing system was developed as a direct response to bridge owners asking for a higher quality, longer lasting, more universal joint sealing system. The Silicoflex system consists of an extruded preformed inorganic silicone gland with carbon black fillers to nearly eliminate the effects of UV radiation. The gland is shaped in an inverted "V" fashion which helps minimize the accumulation of debris but also provides the system a means to evacuate this debris under normal operating conditions. The system also comes with a single part silicone adhesive and a primer which creates a tremendously strong bond to the joint header. By selecting one of five individual Silicoflex glands you can now seal any joint ranging from 0.5" to 6.5". The ability of the system to bond to new or existing steel extrusions, concrete, or elastomeric concrete joint headers makes it the most versatile system on the market today. The Silicoflex bridge joint system has garnered approvals from bridge owners all over the world for both new construction and rehab work based on its performance and incredible track record of longevity in the field. RJ Watson is proud to mention we have installations of this system that have been preforming well for over 20 years now installed on major highways across the US.

FEATURES

Low Stress Design

During normal cyclic movement, the Silicoflex seal is not in tension due to its folded inverted 'V' shape. This reduces stress on both the seal and adhesive and eliminates the possibility of cohesive failure typically found in field molded sealants.

Large Movement Range

Silicoflex is manufactured in five different sizes which cover the full range of movements typical of single cell joint openings.

Temperature Insensitive

Silicoflex will remain flexible in almost any environment. The material stability temperature range is -60° F to +350° F.

Ultraviolet Radiation and Ozone Resistant

The Silicoflex seal is comprised of an inorganic base silicone, which means it is highly resistant to the damaging effects of ultraviolet radiation and ozone attack. This resistance is far superior to organic rubbers commonly found in other joint sealing systems which degrade due to U.V. exposure.

Versatile

Silicoflex will bond equally well to steel, concrete and elastomeric or polymer concrete surfaces. Silicoflex can also be used to reseal failed strip seal joints and works well with irregular, skewed and spalled joint openings. These features make Silicoflex ideal for maintenance and retrofit projects.

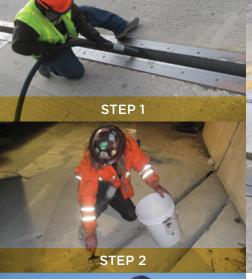
Fast and Simple Installation

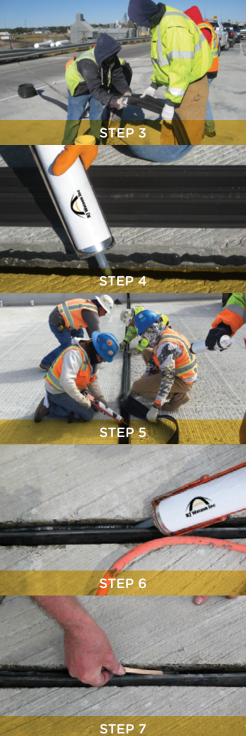
Silicoflex seal installation time is about 15-20 minutes per lane. 30-60 minutes after the installation is complete, the lane can be reopened to traffic.

Maintenance Friendly

In the event of a puncture, Silicoflex can be easily repaired using the silicone based locking adhesive. With more severe damage, locally damaged pieces can be removed and new pieces can be spliced in.

Durable


Silicoflex applications installed in the mid-1990's are still performing effectively to this day.


Debris Friendly, Self Cleaning Design

The inverted 'V' shape directs debris to the edges of the seal where it is bonded and fixed. During cycling, debris is channeled upwards thereby reducing the chance of punctures. Other systems with 'V' shaped seals direct debris towards the unsupported center, making it much more susceptible to punctures from debris.

Field Spliceable and Directional Changes

If required, the Silicoflex gland can be bonded to itself by using the same silicone locking adhesive. This permits installations lane by lane or rapid custom tailoring of the gland to go up and around curbs and parapets.

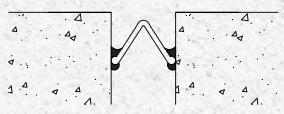
INSTALLATION CONDITIONS

The recommended minimum air/surface temperature to install Silicoflex is 40° F. The joint surface must be completely dry before installing Silicoflex. Silicoflex should not be installed immediately after precipitation or if precipitation is forecast for the day. Joint preparation and installation of Silicoflex must be done during the same day. Traffic must not be allowed to pass over a sandblasted and primed joint.

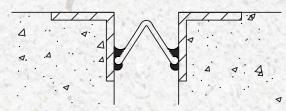
INSTALLATION STEPS

- 1. For new primed steel joint installations, brush blast the steel, then wipe both vertical faces of the joint clean with a rag saturated in denatured alcohol. For new concrete joint installations, roughen concrete surface and wipe vertical faces of joint clean with a rag saturated in denatured alcohol. Roughening can be done by sandblasting, wire brushing or other mechanical methods approved by R.J. Watson. For joint seal replacements to existing joints, sandblast the vertical faces of the joint and wipe clean with a rag saturated in denatured alcohol.
- 2. Mix together A and B components of Silicoflex Primer using a hand or drill mixer. Apply to the vertical joint interfaces.
- 3. Unroll Silicoflex seal, place adjacent to joint opening and clean the seal with a rag saturated with denatured alcohol.
- 4. Using a jumbo size (29 oz) caulking gun, place a 3/8" diameter bead of Silicoflex Locking Adhesive to both sides of the vertical face of the joint. This bead of Silicoflex Locking Adhesive should be placed at least 1" below the top of the joint elevation.
- 5. Insert the Silicoflex seal into the joint, initially placing it above the first bead of Silicoflex Locking Adhesive. Gently ease the Silicoflex seal downward while maintaining contact of the sides of the seal to the joint header. Position the Silicoflex seal to the proper depth, which is when the top of the seal is at least 0.5" below top of road surface.
- 6. Apply a second bead of Silicoflex Locking Adhesive along each side of the Silicoflex seal, to the top of the serrations, and no higher. This second bead of Silicoflex Locking Adhesive should be in contact with the Silicoflex seal and the joint face.
- 7. The Silicoflex Locking Adhesive must be 'tooled' at least twice with a tongue depressor to ensure complete contact with the joint face.
- 8. Allow 60 minutes before allowing traffic over a newly installed Silicoflex seal, unless directed otherwise by an approved representative. Vertical curbs, directional changes and field splices require the Silicoflex Locking Adhesive as a bonding agent.

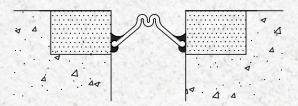
R.J. Watson employs qualified technical representatives who can provide hands-on training for installers of Silicoflex. It is highly recommended that this service be used by first time installers. Please call our office to schedule a technical representative to be at your jobsite.

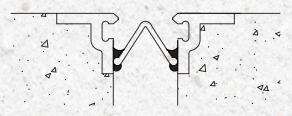

MATERIAL PROPERTIES

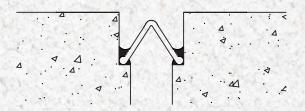
SILICOFLEX GLAND

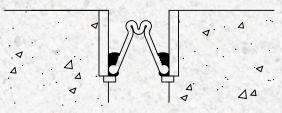

SILICOFLEX ADHESIVE	SIL	ICOFL	EX AD	HESI	/E
---------------------	-----	-------	-------	-------------	----

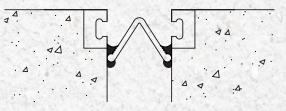
Property Value	Test Method	Typical	Property Value	Test Method	Typical
Durometer (Shore A)	ASTM D2240	55 +/- 5	Tensile Strength	ASTM D412	200 Psi min. (1.38 MPa)
Tensile Strength	ASTM D412	1,000 psi. min. (6.89 MPa)	Elongation	ASTM D412	450% min.
Elongation	ASTM D412	400% min.	Tack free time	ASTM C679	20 min max.
Tear Strength (Die B)	ASTM D624	100 ppi min. (17 kN/m)	Cure Time 14" bead	ASTM C679	24 hrs. max
Compression Set At 212° F 70 hrs.	ASTM D395	30% max.	Resistance to UV	ASTM C793	No cracking, ozone chalking or degradation

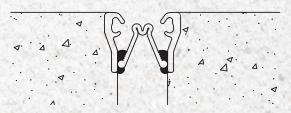

TYPICAL SILICOFLEX APPLICATIONS


Silicoflex installed in concrete headers

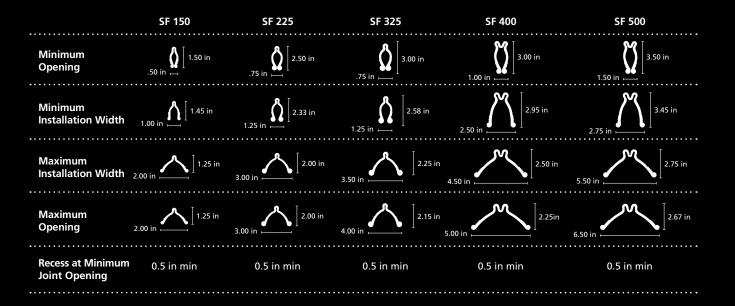

Silicoflex installed with steel angle armoring

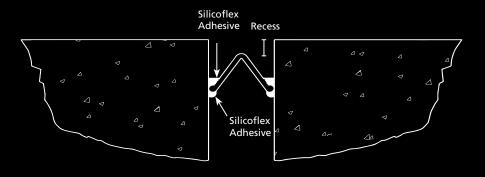

Silicoflex installed with elastomeric or polymer concrete nosing material

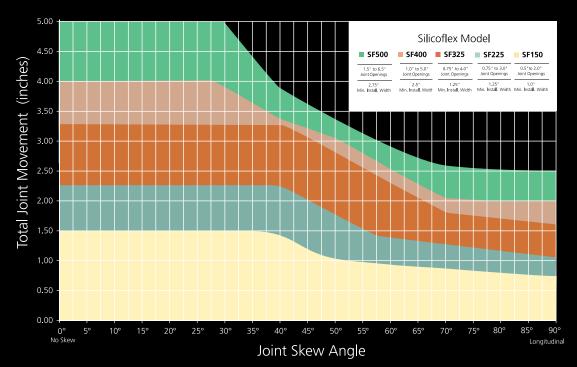

Silicoflex installed to repair Strip Seal Locking Mechanism Type M Extrusion


Silicoflex installed in stepped concrete headers

Silicoflex installed with stepped flat steel armoring




Silicoflex installed to repair Strip Seal Locking Mechanism Type A/E Extrusion


Silicoflex installed to repair Strip Steel Locking Mechanism Type P Extrusion

SILICOFLEX MODELS

Silicoflex Sizing For Skewed Joints

TESTING

Elongation - The SF400 model of Silicoflex, rated at a 5" maximum opening, was bonded to a steel fixture and allowed to cure. It was then elongated to failure. The silicone seal withstood a 14" opening before it failed. When it did fail, it failed at the center of the silicone seal, and not at the bonding point.

Vertical Load - Silicoflex was bonded to a concrete surface and filled with debris. It was then frozen to -20 degrees (F). A vertical load was placed on the Silicoflex seal, simulating how vehicular traffic would impact the joint. Silicoflex withstood 2,200 lbs of force without failing. It could have withstood more, but this was the capacity of the hydraulic actuator.

Cyclic Testing - Silicoflex was installed in a cyclic test cell which displaces the joint seal at a 45° skew angle. 2,000 cycles were completed at -20° F without any rips, tears or bond failures.

Accumulation of Debris - Silicoflex was installed in a joint seal testing fixture, filled with debris, and then cycled to minimum and maximum openings. The inverted 'V' shape directs debris to the seal where it is bonded and fixed. This consequently causes debris to be channeled upwards, rather than staying trapped in the joint and overstressing the seal.

Field Splice - Two SF225 Silicoflex seals were spliced together using the locking adhesive. It was then stretched to failure. 750 lbs of force was recorded just prior to failure.

11035 Walden Ave | Alden, NY 14004 USA | 716.901.7020 | sales@rjwatson.com

RJWatson.com